
Implementing MPI-IO Atomic Mode Without File System Support

Robert Ross Robert Latham William Gropp Rajeev Thakur Brian Toonen
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439, USA

{rross,robl,gropp,thakur,toonen}@mcs.anl.gov

Abstract

The ROMIO implementation of the MPI-IO standard
provides a portable infrastructure for use on top of any
number of different underlying storage targets. These dif-
ferent targets vary widely in their capabilities, and in some
cases, additional effort is needed within ROMIO to support
the complete MPI-IO semantics. One aspect of the interface
that can be problematic to implement is the MPI-IO atomic
mode. This mode requires enforcing strict consistency se-
mantics. For some file systems, native locks may be used
to enforce these semantics, but not all file systems have lock
support. In this work, we describe two algorithms for imple-
menting efficient mutex locks using MPI-1 and MPI-2 capa-
bilities. We then show how these algorithms may be used to
implement a portable MPI-IO atomic mode for ROMIO. We
evaluate the performance of these algorithms and show that
they impose little additional overhead on the system. Be-
cause of the low-overhead nature of these algorithms, they
are likely useful in a variety of situations where distributed
locks are needed in the MPI-2 environment.

1 Introduction

MPI-IO [8] provides a standard interface for MPI pro-
grams to access storage in a coordinated manner. Imple-
mentations of MPI-IO, such as the portable ROMIO imple-
mentation [12] and the implementation for AIX GPFS [9]
have aided in the widespread availability of MPI-IO. These
implementations in particular include a collection of opti-
mizations [11, 9, 6] that leverage MPI-IO features to obtain
higher performance than would be possible with the less ca-
pable POSIX interface [5].

One component of the MPI-IO interface that has been
difficult to implement portably is the atomic mode. This
mode provides a more strict consistency semantic than the
default MPI-IO mode or even POSIX I/O. Atomic mode is a
very useful capability for applications and higher-level I/O

components that need to share data through a file. One good
example where atomic mode may be helpful is in HDF5,
where internal data stored in the file is used by all processes
to place application data in a consistent manner. In ROMIO
the atomic mode is implemented through the use of file sys-
tem locks where available. Unfortunately for file systems
without locking systems, such as Lustre and PVFS2, atomic
mode is not supported.

With the recent full implementation of MPI-2 one-sided
operations in MPICH2 and other MPI packages, a new op-
portunity has arisen. By building up mutex locks from
one-sided and point-to-point operations, we can implement
atomic mode semantics without file system support. If this
mutex lock can be operated on efficiently, it may be useful
in other situations as well.

1.1 MPI-IO Atomic Mode

The MPI-IO atomic mode guarantees sequential consis-
tency of writes to the same file by a group of processes
who have previously collectively opened the file. It also
guarantees that these writes will be immediately visible by
other processes in this group. This semantic is primarily
used for two purposes: simplifying communication through
a shared file, and guaranteeing atomicity of writes to over-
lapping regions. The MPI-IO standard encourages applica-
tions to use the more relaxed default MPI-IO consistency
semantics when peak performance is desired, as the MPI-
IO implementation can more easily optimize the requests.
Even though atomic mode might not be the fastest way to
access the underlying file system, some programs need this
capability, so it is important that we support the standard in
its entirety where possible.

The ROMIO implementation builds MPI-IO on top of
the I/O API supported by the underlying file system. For
many file systems, this interface is POSIX. While the
POSIX I/O read, write, readv, and writev calls
also guarantee sequential consistency, they cannot describe
all possible I/O operations through the MPI-IO interface,



particularly ones with noncontiguous data in file. The
lio listio function available as part of the POSIX real-
time extensions is also inadequate because the list of oper-
ations are considered independent – there is no guarantee
of atomicity with respect to the entire collection. Because
of these characteristics, it is necessary to impose atomicity
through additional means. For these file systems ROMIO
uses fcntl locks, locking contiguous regions encompass-
ing all the bytes that the process will access.

File systems such as PVFS [3] and PVFS2 do not guar-
antee atomicity of operations at all, instead relying on the
MPI-IO layer to provide these guarantees. Other types of
storage back-ends, such as GridFTP [1] and Logistical Net-
works [2] do not have locking capabilities either. In the ex-
isting ROMIO implementation atomic mode is simply not
supported for these types of storage.

In order to implement atomic mode without file system
support, we need to build a mechanism for coordinating ac-
cess to a file, or regions of a file. Our approach is to provide
a mutex lock for the entire file coupled with an efficient sys-
tem for notifying subsequent processes on lock release. We
will describe how we implement these capabilities in the
following section.

2 Efficient, Scalable Mutex Locks with MPI

The MPI one-sided operations include both active target
and passive target options[8]. Active target operations re-
quire that the process that owns the memory participate in
the operation. These operations are not particularly useful
in this context because our processes are performing inde-
pendent operations; they do not know when other processes
are acquiring or releasing locks. Passive target operations,
on the other hand, do not require that the owner of the mem-
ory (the target) participate. These operations are ideal for
our purposes.

Before MPI one-sided calls may be used, a collection
of processes must first define a window object. This object
contains a collection of memory windows, each associated
with the rank of the process on which the memory resides.
After defining the window object, MPI processes can then
perform put, get, and accumulate operations into the mem-
ory windows of the other processes.

MPI passive target operations are organized into ac-
cess epochs that are bracketed by MPI Win lock and
MPI Win unlock calls. Clever MPI implementa-
tions [10] will combine all the data movement operations
(puts, gets, and accumulates) into one network transaction
that occurs at the unlock.

Implementing locks with MPI one-sided operations
poses an interesting challenge: the standard does not define
the traditional test-and-set and fetch-and-increment opera-
tions. In fact, no mechanism exists for both reading and

writing a single memory region in an atomic manner in the
MPI scheme. Two approaches are outlined in [4]. These ap-
proaches have some disadvantages, particularly in that they
require many remote one-sided operations and poll on re-
mote memory regions.

At a high level, our algorithm is simple. A process that
wants to acquire the lock first adds itself to a list of pro-
cesses waiting for the lock. If the process is the only one
in the list, then it has acquired the lock. If not, it will wait
for notification that the lock has been passed on to it. Pro-
cesses releasing the lock are responsible for notifying the
next waiting process (if any) at lock release time.

Both algorithms presented here were influenced by the
MCS lock [7], an algorithm devised for efficient mutex
locks in shared memory systems. The MCS lock has two
characteristics that we mimic: spinning only on local mem-
ory regions, and O(1) network transactions per lock acqui-
sition. However, we are not able to meet their achievement
of constant memory size per lock, mainly due to the con-
straint in MPI of not reading and writing to the same mem-
ory location in a single access epoch. Our use of MPI com-
munication, and the approach we use for organizing mem-
ory windows, are unique to our algorithms.

2.1 Mutex Locks with One-Sided Operations

Our first algorithm uses only one access epoch to attempt
to obtain the lock. In the presence of contention that ac-
cess epoch is followed only by local polling. When unlock-
ing, a single access epoch is used to release the lock, and if
another process is waiting, a second access epoch notifies
that process that it now holds the lock. We will call this
approach the one-sided algorithm, because only one-sided
operations are used in the algorithm.

The one-sided algorithm uses a pair of MPI window ob-
jects. The first, which we will call waitlistwin, con-
sists of a single window of N bytes on a single process,
one byte per process participating in the lock. The second
window object, pollbytewin, consists of a single byte
window on each of the processes. Figure 2 shows these
windows, and Figure 1 shows MPI pseudocode for creating
these windows.

The algorithm works as follows. Processes trying to ob-
tain the lock use a single access epoch to read (get) all of
the waitlistwin memory region except for the byte that cor-
responds to their rank, and they write (put) a non-zero value
into the byte corresponding to their rank. This effectively
places them in the list of processes that would like to obtain
the lock. Following that access epoch the process examines
the contents of the memory region that it read during the
epoch. If all values are zero, then no one else had the lock,
and they are now the owner.

Local spinning occurs when a process attempts to obtain



if (myrank == homerank) {
MPI_Win_create(waitlistaddr, nprocs, 1,

MPI_INFO_NULL, comm, &waitlistwin);
}
else {

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL,
comm, &waitlistwin);

}

MPI_Win_create(pollbyteaddr, 1, 1, MPI_INFO_NULL,
comm, &pollbytewin);

. . .

waitwin[N]

Process 0 Process 1 Process N−1

waitwin window
object

wakewin window
object

wakewin[1] wakewin[1] wakewin[1]

. . .

Figure 1. MPI pseudocode for creating win-
dows in one-sided algorithm.

Figure 2. Two MPI windows are created in
the one-sided algorithm.

the lock and sees that some other process already owns the
lock. When this happens, the process continually reads the
local byte in the pollbytewin, waiting for it to be set to a
non-zero value. Another process, on releasing the lock, will
notify the spinning process by writing a non-zero value into
this memory region. MPI pseudocode for obtaining the lock
is shown in Figure 3.

When the process is ready to release the lock, it performs
a second access epoch, again reading all bytes except the
one corresponding to their rank and writing a zero value
into their rank. Following that access epoch the process ex-
amines the contents of the memory region that it read during
the epoch. If all values are zero, then no one was waiting for
the lock, and the process has finished releasing the lock. If
there is a non-zero value, then one or more processes were
waiting for the lock. For fairness purposes the process se-
lects the next highest waiting rank after its own, wrapping
back to rank zero as necessary. It then uses one additional
access epoch to set the byte in that process’s pollbytewin
window to a non-zero value, notifying the process that it
now owns the lock. MPI pseudocode for releasing the lock
is shown in Figure 4.

2.2 Eliminating Polling with Point-to-Point

While the previous algorithm minimizes remote mem-
ory access, we would expect that spinning on local vari-
ables would waste many CPU cycles. This can be particu-
larly important in systems where the memory bus is shared
with other processors or processors are oversubscribed (i.e.
more MPI processes than physical processors). One solu-
tion would be to use a back-off algorithm to mitigate CPU
utilization, but that would incur additional latency in our
lock acquisition.

Fundamentally we are using the pollbytewin for notifi-
cation. We want one process to tell another one that it now
owns the lock. Because we are in an MPI environment, we

have a very effective mechanism for implementing notifi-
cation: point-to-point operations. We will call our second
algorithm, which uses both MPI-1 point-to-point and MPI-2
one-sided operations, the hybrid algorithm.

The hybrid algorithm eliminates the pollbytewin
window object entirely. The process of acquiring and re-
leasing the lock is similar to the one-sided algorithm, except
that notification is handled by a single, simple MPI Send
on the process releasing the lock and by a MPI Recv on
the process waiting for notification, as shown in Figures 5
and 6. Because the waiting process does not know who will
notify it that it now owns the lock, MPI ANY SOURCE is
used to allow the receive operation to match any sender. A
zero-byte message is used because all we are really inter-
ested in is synchronization; the arrival of the message is all
that is needed.

3 Performance Evaluation

We can trivially enforce atomic mode semantics by using
our mutex lock to implement a whole-file lock. Because we
are primarily interested in correctness, this is a viable option
for a portable implementation.

Our tests were run on a subset of Jazz, a 350 node
Linux cluster at Argonne National Laboratory. Jazz has
both Myrinet and Fast Ethernet networks We used both of
these networks for testing, providing us with results on both
low and high latency networks. We expect that we will see
higher overhead in the Fast Ethernet tests because of the
lower performance characteristics of the network. A CVS
version of MPICH2 (version 1.0 plus minor enhancements)
was used as our MPI implementation.

To isolate the performance characteristics of our algo-
rithm from other artifacts in the system, we implemented
synthetic benchmarks using the two algorithms presented.

Our first benchmark measures the time spent locking and
unlocking without contention. This benchmark uses two



blklens[0] = mutex->myrank;
disps[0] = 0;
blklens[1] = mutex->nprocs - mutex->myrank - 1;
disps[1] = mutex->myrank + 1;
MPI_Type_indexed(2, blklens, disps, MPI_BYTE, &waitlisttype);

val = 1;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, waitlistwin);
MPI_Get(waitlistcopy, nprocs-1, MPI_BYTE, homerank, 0, 1, waitlisttype, waitlistwin);
MPI_Put(&val, 1, MPI_BYTE, homerank, myrank, 1, MPI_BYTE, waitlistwin);
MPI_Win_unlock(homerank, waitlistwin);

/* check to see if lock is already held */
for (i=0; i < (nprocs - 1) && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

unsigned char pollbytecopy = 0;

/* spin on local variable until set by previous lock holder */
while (!pollbytecopy) {

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, myrank, 0, pollbytewin);
pollbytecopy = *pollbyteaddr;
MPI_Win_unlock(myrank, pollbytewin);

}

/* set pollbyte back to zero */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, mutex->myrank, 0, pollbytewin);
*pollbyteaddr = 0;
MPI_Win_unlock(myrank, pollbytewin);

}

Figure 3. MPI pseudocode for obtaining lock in one-sided algorithm. Note: waitlisttype is actually
created at lock creation time and cached in the actual implementation.

val = 0;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, waitlistwin);
MPI_Get(waitlistcopy, nprocs-1, MPI_BYTE, homerank, 0, 1, waitlisttype, waitlistwin);
MPI_Put(&val, 1, MPI_BYTE, homerank, myrank, 1, MPI_BYTE, waitlistwin);
MPI_Win_unlock(homerank, waitlistwin);

/* check to see if lock is already held */
for (i=0; i < (nprocs - 1) && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

int nextrank;
unsigned char pollbytecopy = 1;

/* find the next rank waiting for the lock. we start with the
* rank after ours and look in order to ensure fairness.
*/

nextrank = myrank;
while (nextrank < (nprocs - 1) && waitlistcopy[nextrank] == 0) nextrank++;
if (nextrank < nprocs - 1) nextrank++; /* nextrank is off by one */
else {

nextrank = 0;
while (nextrank < myrank && waitlistcopy[nextrank] == 0) nextrank++;

}

/* set pollbyte on next rank (who is spinning) */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, nextrank, 0, pollbytewin);
MPI_Put(&pollbytecopy, 1, MPI_BYTE, nextrank, 0, 1, MPI_BYTE, pollbytewin);
MPI_Win_unlock(nextrank, pollbytewin);

}

Figure 4. MPI pseudocode for releasing lock in one-sided algorithm.



/* add self to waitlist */
val = 1;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0,

waitlistwin);
MPI_Get(waitlistcopy, nprocs-1, MPI_BYTE,

homerank, 0, 1, waitlisttype, waitlistwin);
MPI_Put(&val, 1, MPI_BYTE, homerank, myrank,

1, MPI_BYTE, waitlistwin);
MPI_Win_unlock(homerank, waitlistwin);

/* check to see if lock is already held */
for (i=0; i < nprocs-1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

/* wait for notification */
MPI_Recv(NULL, 0, MPI_BYTE, MPI_ANY_SOURCE,

WAKEUPTAG, comm, MPI_STATUS_IGNORE);
}

/* remove self from waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0,

waitlistwin);
MPI_Get(waitlistcopy, nprocs-1, MPI_BYTE,

homerank, 0, 1, waitlisttype, waitlistwin);
MPI_Put(&val, 1, MPI_BYTE, homerank, myrank,

1, MPI_BYTE, waitlistwin);
MPI_Win_unlock(homerank, waitlistwin);

for (i=0; i < nprocs-1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

int nextrank = myrank;

/* find the next rank waiting for the lock */
while (nextrank < nprocs-1 &&

waitlistcopy[nextrank] == 0) nextrank++;
if (nextrank < nprocs - 1) {

nextrank++; /* nextrank is off by one */
}
else {

nextrank = 0;
while (nextrank < myrank &&

waitlistcopy[nextrank] == 0) nextrank++;
}

/* notify next rank with zero-byte message */
MPI_Send(NULL, 0, MPI_BYTE, nextrank, WAKEUP, comm);

}

Figure 5. MPI pseudocode for obtaining lock
in hybrid algorithm.

Figure 6. MPI pseudocode for releasing lock
in hybrid algorithm.

MPI processes, where the first process owns the waitwin
and the second process performs a sequence of locks and
unlocks (across the network). This second process spins
in a tight loop locking and unlocking, and we average the
results of the iterations. Using this benchmark we found
that the operation of locking and unlocking together take an
average of 0.9 ms on Fast Ethernet and 0.1 ms on Myrinet
in the absence of contention.

Our second synthetic benchmark simulates a collection
of processes that all independently compete for the lock in
order to perform a sequence of atomic operations. The pro-
cess of performing these atomic operations is simulated by
sleeping for an amount of time specified as a parameter to
the test. We call this time simply the “work time”. Each pro-
cess performs 100 iterations of this lock/work/unlock cycle
in a tight loop as part of a single test. We found that we were
unable to accurately simulate a smaller amount of work than
10 ms because the nanosleep function call consistently
delayed for no less than 10 ms regardless of how small a
time value we passed to it.

In a real system this work time would be the time spent
performing the I/O operations. Typical I/O operations take
on the order of milliseconds. A high-end storage system ca-
pable of delivering 100 MBytes/sec can read or write about
1 MBytes in 10 ms – a fairly typical I/O size in the world
of high-performance I/O. We vary our work time from 10 to

100 milliseconds in our experiments, simulating I/O opera-
tions of 1 Mbytes to 10 Mbytes in our hypothetical storage
environment.

We know that there will be no I/O overlap using our al-
gorithm, because we are serializing access to implement the
atomic mode. This means that the total time to execute our
synthetic benchmark is approximately n times our selected
work time plus any overhead incurred by our locking algo-
rithm, where n is the number of processes. We are inter-
ested in measuring this overhead and examining it as a per-
centage of the sum of the work times for all processes. To
calculate the “overhead time”, we subtract the total amount
of time that processes actually spend working (not waiting
for the lock) from the total elapsed time of the simulation.
We then calculate the percentage of time lost due to our al-
gorithm’s overhead, which we term the “percent overhead”.

To estimate the percent overhead for smaller work times,
we ran our benchmark without any delay between locking
and unlocking (effectively zero work time). This gave us
an upper bound on the amount of time spent in the locking
and unlocking operations. We used these values to estimate
percent overhead at a 1 ms work time value.

In Figure 7(a) and Figure 7(b) we compare the percent
overhead of using the one-sided algorithm to the percent
overhead of using the hybrid algorithm as a percentage of
total elapsed time. Work time is fixed at 100 msec per oper-



1 4 8 16 32 64
Fast Ethernet 0.008 2.0 5.4 11.2 24.7 56.4
Myrinet 0.004 0.28 0.6 1.3 2.8 5.9

Table 1. Total overhead time from simulation
with zero work time (ms)

ation. We see that the hybrid algorithm performs at least as
well as the one-sided algorithm in all cases. If the CPUs are
oversubscribed, hybrid performance does not degrade while
the percent overhead of the one-sided method increases dra-
matically. Because we see performance improvements in
the oversubscribed case and no penalty with one CPU per
process, we will focus on the hybrid algorithm for the rest
of this discussion.

In Figure 8(a) we focus on the overhead of the hybrid
algorithm, varying both number of processes (X axis) and
the time spent holding the lock (“working”) on each itera-
tion, using the Fast Ethernet network. We see that for simu-
lated work times in the range of 32 ms and higher, overhead
is negligible (less than 2%). Even at a 10 ms work time
the overhead is sufficiently small for 64 processes (approxi-
mately 4.25%), and the rate at which the overhead increases
with increasing numbers of processes indicates that the al-
gorithm would scale to many more processes for this work
granularity. The reason that we see only 4.25% overhead at
10 ms of work time when earlier we calculated that for Fast
Ethernet the locking and unlocking sequence takes 0.9 ms
is that processes attempting to acquire the lock can do so
while the lock is held by another process, overlapping some
lock communication with another process’s work time.

Figure 8(b) shows a repeat of the experiment, this time
making use of the Myrinet network. Percent overhead is an
order of magnitude smaller, which is what we would expect
given that Myrinet latency is roughly an order of magnitude
lower than Ethernet.

Table 1 presents the results of running our simulation
with no delay between locking and unlocking. These val-
ues give us an indication of the amount of overhead that
would occur for very small work times. Numbers for the
single process case are particularly low because all com-
munication occurs locally. We can estimate an expected
percent overhead for a given work time with the equation
100 ∗ On/(On + n ∗ Tw), where n is the number of pro-
cesses concurrently operating, On is the total overhead for
n processes on the given network, and Tw is the work time.
This estimate is actually somewhat high because it does not
account for overlap of locking attempts by some processes
during the work time of another.

Using this equation we can estimate that we would spend
approximately 47% of our time locking and unlocking in the

case of a 1 ms work time on 64 processes on the Fast Eth-
ernet network, or 8.5% of our time on the Myrinet network.
We note that percentage overhead will always become a fac-
tor as the amount of work performed becomes smaller; this
is an unavoidable result of the network operations necessary
to acquire the distributed lock.

The experiments above show that for modest work times
(as low as 10 ms), our algorithm incurs very little over-
head on either network. For smaller work sizes the algo-
rithm is efficient only on a high-performance network such
as Myrinet.

4 Conclusions and Future Work

We have presented two new algorithms for implementing
mutual exclusion with notification using MPI primitives.
Our algorithms are capable of performing locking and un-
locking in two access epochs in the absence of contention,
and an additional remote access epoch or a single point-to-
point is used for notification in the event of contention. The
algorithms are also designed to avoid starvation by cycling
through ranks. We have shown that the better of these two
algorithms operates with very low overhead even in over-
subscribed systems. We found that for operations that re-
quire 10 ms or more to complete, our algorithm was ef-
ficient even on a low-performance Fast Ethernet network.
For operations that require less time, a higher-performance
network would be necessary to maintain efficiency. On sys-
tems with these networks, the low overhead nature of our
algorithm makes it a useful building block for applications
in general.

We intend to use this algorithm for implementing MPI-
IO atomic mode in a portable manner in ROMIO. This
will provide atomic mode semantics for file systems whose
locking subsystems are not yet complete (e.g. Lustre) and
for file systems that lack locking subsystems entirely (e.g.
PVFS2). Further investigation will be necessary to deter-
mine if this approach is more scalable than the locking im-
plementations in some parallel file systems (e.g. GPFS). If
so, we will modify ROMIO to use our scalable algorithm
rather than the file system locks.

While this work has focused specifically on providing a
correct and efficient implementation that is portable across
file systems, there are a number of ways in which this work
could be extended if we determined that higher performance
atomic mode access was necessary. One manner in which
this system could be improved is through the detection of
non-overlapping file views. File views are the mechanism
MPI-IO uses for specifying a subset of a file that a process
will access. When the file view for a process does not over-
lap with the file views of other processes, locking is unnec-
essary – conflicts will not occur. Because of the complexity
of the MPI datatypes used to describe file views, this is an



0
5

10
15
20
25
30
35
40
45
50

1 10 100

pe
rc

en
t o

ve
rh

ea
d

nprocs

linear
hybrid

2proc linear
2proc hybrid

(a) The one-sided and hybrid techniques. ‘2proc’ indicates two
MPI processes per CPU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 100

pe
rc

en
t o

ve
rh

ea
d

nprocs

linear
hybrid

2proc hybrid

(b) Highlighting the three low-overhead cases in (a)

Figure 7. Percent overhead of locking strategies for 100 ms work time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 10 100

pe
rc

en
t o

ve
rh

ea
d

nprocs

10 msec
32 msec

100 msec

(a) Percent overhead vs. work size for Fast Ethernet

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 10 100

pe
rc

en
t o

ve
rh

ea
d

nprocs

10 msec
32 msec

100 msec

(b) Percent overhead vs. work size for Myrinet. Observe that
the scale of the Y-axis is one tenth that of Ethernet.

Figure 8. Interconnect effect on overhead



open research topic.
Another manner in which this work could be enhanced

is through the use of multiple locks to partition a file into
independent regions. Processes could then acquire only the
locks needed to access regions that they were changing, al-
lowing for concurrent access to separate regions. Ideally a
range-based locking approach would be used. While main-
taining the shared data structures necessary to store a list
of ranges will undoubtedly require additional overhead, this
approach might lead to an MPI-IO atomic mode that pro-
vides a level of concurrency and efficiency that beats that of
the best file system locking implementations, eliminating
the need for file locks in ROMIO entirely.

We have demonstrated that this work introduces little
overhead for up to 64 processes. To handle even more pro-
cesses (on the order of thousands), a tree algorithm might
be more appropriate, where leaf nodes first acquire an inter-
mediate lock before acquiring the lock itself. This level of
indirection would limit contention on the byte array. Fur-
ther testing at scale is necessary to determine if this extra
degree of complexity in the algorithm is warranted.

Acknowledgments

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, Of-
fice of Science, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

References

[1] B. Allcock, J. Bester, J. Bresnahan, A. L. Cherve-
nak, I. Foster, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnal, and S. Tuecke. Data management and
transfer in high performance computational grid envi-
ronments. In Parallel Computing Journal, Vol. 28 (5),
pages 749–771, May 2002.

[2] Scott Atchley, Micah Beck, Jeremy Millar, Terry
Moore, James S. Plank, and Stephen Soltesz. The lo-
gistical networking testbed. Technical Report Tech-
nical Report UT-CS-02-496, University of Tennessee
Department of Computer Science, December 2002.

[3] Philip H. Carns, Walter B. Ligon III, Robert B. Ross,
and Rajeev Thakur. PVFS: A parallel file system for
linux clusters. In Proceedings of the 4th Annual Linux
Showcase and Conference, pages 317–327, Atlanta,
GA, October 2000. USENIX Association.

[4] William Gropp, Ewing Lusk, and Rajeev Thakur.
Using MPI-2: Advanced Features of the Message-
Passing Interface. MIT Press, Cambridge, MA, 1999.

[5] IEEE/ANSI Std. 1003.1. Portable operating system in-
terface (POSIX)–part 1: System application program
interface (API) [C language], 1996 edition.

[6] Robert Latham, Robert Ross, and Rajeev Thakur. The
impact of file systems on MPI-IO scalability. In Pro-
ceedings of EuroPVM/MPI 2004, September 2004.

[7] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory multi-
processors. ACM Transactions on Computer Systems,
1991.

[8] MPI-2: Extensions to the message-passing interface.
The MPI Forum, July 1997.

[9] Jean-Pierre Prost, Richard Treumann, Richard
Hedges, Bin Jia, and Alice Koniges. MPI-IO/GPFS,
an optimized implementation of mpi-io on top of
gpfs. In Proceedings of SC2001, November 2001.

[10] Rajeev Thakur, William Gropp, , and Brian Too-
nen. Minimizing synchronization overhead in the im-
plementation of MPI one-sided communication. In
Proceedings of the 11th European PVM/MPI Users’
Group Meeting (Euro PVM/MPI 2004), pages 57–67,
September 2004.

[11] Rajeev Thakur, William Gropp, and Ewing Lusk. A
case for using MPI’s derived datatypes to improve I/O
performance. In Proceedings of SC98: High Per-
formance Networking and Computing. ACM Press,
November 1998.

[12] Rajeev Thakur, William Gropp, and Ewing Lusk. On
implementing MPI-IO portably and with high perfor-
mance. In Proceedings of the Sixth Workshop on In-
put/Output in Parallel and Distributed Systems, pages
23–32, May 1999.


